Affiliation:
1. School of Mechanical and Electrical Engineering, Guangdong Industry Polytechnic, Guangzhou, China
Abstract
Performance of face detection and recognition is affected and damaged because occlusion often leads to missed detection. To reduce the recognition accuracy caused by facial occlusion and enhance the accuracy of face detection, a visual attention mechanism guidance model is proposed in this paper, which uses the visual attention mechanism to guide the model highlight the visible area of the occluded face; the face detection problem is simplified into the high-level semantic feature detection problem through the improved analytical network, and the location and scale of the face are predicted by the activation map to avoid additional parameter settings. A large number of simulation experiment results show that our proposed method is superior to other comparison algorithms for the accuracy of occlusion face detection and recognition on the face database. In addition, our proposed method achieves a better balance between detection accuracy and speed, which can be used in the field of security surveillance.
Funder
Education Bureau of Guangdong Province
Subject
Computer Science Applications,Software
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献