Multimodal Imaging Characteristics of ADRP in a Family with p.Thr58Arg Substituted RHO Mutation

Author:

Ruppert Misty1,Pyun John1,Chalam K. V.1ORCID,Sierpina David1

Affiliation:

1. Department of Ophthalmology, Loma Linda University School of Medicine, Loma Linda, CA, USA

Abstract

Background. Autosomal dominant retinitis pigmentosa (adRP) is a rare cause of progressive visual impairment in young patients and is frequently a result of RHO gene mutations. p.Thr58Arg rhodopsin mutation leads to misfolding of rhodopsin, subsequent accumulation in the endoplasmic reticulum, and leads to consecutive atrophy of photoreceptor cells through apoptosis. Materials and Methods. We describe multimodal imaging findings in a 58-year-old female with adRP due to a c.173 C > G, p.Thr58Arg rhodopsin mutation (confirmed on genotyping), including ultra-wide-field fundus autofluorescence (UWF-FAF), color scanning laser ophthalmoscopy, structural optical coherence tomography (OCT), OCT-angiography (OCT-A), electroretinography (ERG), and visual field testing (HVF). Additionally, we compare the patient’s phenotypic findings to those of her offspring, who was also affected by adRP. Results. The 58-year-old female and her son with symptoms of nyctalopia and decreased vision showed macular pigmentary changes in a bull’s-eye pattern along with bone spicules in periphery with retinal atrophy. Genotyping confirmed p.Thr58Arg rhodopsin mutation. Wide area of dystrophic retina was noted on UWF-FAF, along with corresponding atrophy of photoreceptor layer on OCT. OCTA revealed complete nonperfusion of the superficial capillary plexus in areas of retinal dystrophy. ERG revealed increased latency and decreased amplitudes; HVF revealed constriction of visual fields consistent with retinal findings. Conclusions. Multimodal imaging is extremely helpful in delineating the extent of retinal dystrophy and comparable to ERG for monitoring of progress in retinitis pigmentosa. Photoreceptor layer thickness (measured with OCT) strongly correlated with ERG and can be used as a secondary surrogate for monitoring the disease progress.

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3