Experimental and Simulation Study on Diffusion Behavior of Chloride Ion in Cracking Concrete and Reinforcement Corrosion

Author:

Cheng Yongchun1,Zhang Yuwei1,Wu Chunli1ORCID,Jiao Yubo1ORCID

Affiliation:

1. College of Transportation, Jilin University, Changchun, Jilin 130025, China

Abstract

A chloride ion is a key factor affecting durability of reinforced concrete (RC) structures. In order to investigate chloride migration in cracked concrete, considering the mesoscopic heterogeneity of concrete, concrete modeled here is treated as a four-phase composite consisting aggregate, mortar, crack, and interfacial transition zone (ITZ). In this paper, two-dimensional finite element models of cracked concrete with different crack widths and crack quantity are established and the control parameters are determined based on the nonsteady-state chloride migration (NSSCM) test. In addition, based on the concrete finite element models, influences of crack width, crack quantity, and erosion time on chloride migration behaviors and characteristics are studied. Furthermore, a prediction model of chloride concentration on the simulated surface of a rebar in concrete influenced by different crack states is established. This model is used to derive the corrosion current density and corrosion depth prediction models of a rebar in this paper, which can be used by engineers to estimate the migration behaviors of chloride and rebar corrosion degree in RC structures in a short time and evaluate the duration of RC structures after knowing the status of cracks and chloride diffusion sources.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3