Upregulation of Potassium Voltage-Gated Channel Subfamily J Member 2 Levels in the Lungs of Patients with Idiopathic Pulmonary Fibrosis

Author:

Lee Jong-Uk1,Chang Hun Soo2,Jung Chang An2,Kim Ryun Hee2,Park Choon-Sik1,Park Jong-Sook1ORCID

Affiliation:

1. Genome Research Center and Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea

2. Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Republic of Korea

Abstract

Background. Fibroblast dysfunction is the main pathogenic mechanism underpinning idiopathic pulmonary fibrosis (IPF). Potassium voltage-gated channel subfamily J member 2 (KCNJ2) plays critical roles in the proliferation of myofibroblasts and in the development of cardiac fibrosis. Objectives. This study aimed to evaluate the role of KCNJ2 in IPF. Methods. KCNJ2 mRNA expression was measured using real-time PCR in fibroblasts from IPF patients and normal controls (NCs). Protein concentrations were measured by ELISA in bronchoalveolar lavage (BAL) fluid obtained from NCs (n = 30), IPF (n = 84), nonspecific interstitial pneumonia (NSIP; n = 9), hypersensitivity pneumonitis (HP; n = 8), and sarcoidosis (n = 10). Results. KCNJ2 mRNA levels were significantly higher in fibroblasts from IPF (n = 14) than those from NCs (n = 10, p<0.001). KCNJ2 protein levels in BAL fluid were significantly higher in IPF (6.587 [1.441–26.01] ng/mL) than in NCs (0.084 [0.00–0.260] ng/mL, p < 0.001), NSIP (0.301 [0.070–5.059] ng/mL, p = 0.006), HP (0.365 [0.000–3.407] ng/mL, p = 0.02), and sarcoidosis (0.170 [0.057–1.179] ng/mL, p = 0.001). Receiver operating characteristic curves showed a clear difference between the IPF and NCs according to the KCNJ2 protein level (area under the curve = 0.893). The KCNJ2 protein cutoff level determined from the curves (0.636 ng/mL) showed a 90.0% specificity and 83.3% sensitivity in distinguishing IPF from NCs. Conclusion. KCNJ2 may participate in the development of IPF, and its protein level may be a candidate diagnostic and therapeutic molecule for IPF.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3