Affiliation:
1. Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
2. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
Abstract
Deep learning has the ability to mine complex relationships in fault diagnosis. Deep convolutional neural network (DCNN) with deep structures, instead of shallow ones, can be applied to mining useful information from the original vibration data. However, when the number of the training samples is small, the diagnosis accuracy will be affected. As an improvement of the DCNN, deep convolutional neural network based on the Fisher-criterion (FDCNN) can be used for the fault diagnosis of small samples. But the model parameters in the method are based on human labor or prior knowledge, which is bound to bring negative influence on the diagnosis accuracy. Therefore, a novel adaptive Fisher-based deep convolutional neural network (AFDCNN) method, which can optimize the model parameters adaptively, is proposed as an improvement of the FDCNN. Comparative verification test results show that AFDCNN has more outstanding performance.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献