Uranium Transport in F-Cl-Bearing Fluids and Hydrothermal Upgrading of U-Cu Ores in IOCG Deposits

Author:

Xing Yanlu1,Mei Yuan12ORCID,Etschmann Barbara1,Liu Weihua2ORCID,Brugger Joël1ORCID

Affiliation:

1. School of Earth, Atmosphere and the Environment, Monash University, Clayton, VIC 3800, Australia

2. CSIRO Mineral Resources Flagship, Clayton, VIC 3168, Australia

Abstract

Uranium mineralization is commonly accompanied by enrichment of fluorite and other F-bearing minerals, leading to the hypothesis that fluoride may play a key role in the hydrothermal transport of U. In this paper, we review the thermodynamics of U(IV) and U(VI) complexing in chloride- and fluoride-bearing hydrothermal fluids and perform mineral solubility and reactive transport calculations to assess equilibrium controls on the association of F and U. Calculations of uraninite and U3O8(s) solubility in acidic F-rich (Cl : F = 100 [ppm-based]) hydrothermal fluids at 25–450°C, 600 bar, show that U(IV)-F complexes (reducing conditions) and uranyl-F complexes (oxidizing conditions) predominate at low temperature (T<~200°C), while above ~250°C, chloride complexes predominate in acidic solutions. In the case of uraninite, solubility is predicted to decrease dramatically as U(IV)Cl22+ becomes the predominant U species at T>260°C. In contrast, the solubility of U3O8(s) increases with increasing temperatures. We evaluated the potential of low-temperature fluids to upgrade U and F concentrations in magnetite-chalcopyrite ores. In our model, an oxidized (hematite-rich) granite is the primary source of F and has elevated U concentration. Hydrothermal fluids (15 wt.% NaCl equiv.) equilibrated with this granite at 200°C react with low-grade magnetite-chalcopyrite ores. The results show that extensive alteration by these oxidized fluids is an effective mechanism for forming ore-grade Cu-U mineralization, which is accompanied by the coenrichment of fluorite. Fluorite concentrations are continuously upgraded at the magnetite-hematite transformation boundary and in the hematite ores with increasing fluid : rock (F/R) ratio. Overall, the model indicates that the coenrichment of F and U in IOCG ores reflects mainly the source of the ore-forming fluids, rather than an active role of F in controlling the metal endowment of these deposits. Our calculations also show that the common geochemical features of hematite-dominated IOCG deposits can be related to a two-phase process, whereby a magnetite-hematite-rich orebody (formed via a number of processes/tectonic settings) is enriched in Cu ± U and F during a second stage (low temperature, oxidized) of hydrothermal circulation.

Funder

Australian Research Council

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3