A Data Augmentation Method for Prohibited Item X-Ray Pseudocolor Images in X-Ray Security Inspection Based on Wasserstein Generative Adversarial Network and Spatial-and-Channel Attention Block

Author:

Liu Dongming12ORCID,Liu Jianchang12ORCID,Yuan Peixin3ORCID,Yu Feng12ORCID

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

2. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China

3. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

Abstract

For public security and crime prevention, the detection of prohibited items in X-ray security inspection based on deep learning has attracted widespread attention. However, the pseudocolor image dataset is scarce due to security, which brings an enormous challenge to the detection of prohibited items in X-ray security inspection. In this paper, a data augmentation method for prohibited item X-ray pseudocolor images in X-ray security inspection is proposed. Firstly, we design a framework of our method to achieve the dataset augmentation using the datasets with and without prohibited items. Secondly, in the framework, we design a spatial-and-channel attention block and a new base block to compose our X-ray Wasserstein generative adversarial network model with gradient penalty. The model directly generates high-quality dual-energy X-ray data instead of pseudocolor images. Thirdly, we design a composite strategy to composite the generated and real dual-energy X-ray data with background data into a new X-ray pseudocolor image, which can simulate the real overlapping relationship among items. Finally, two object detection models with and without our data augmentation method are applied to verify the effectiveness of our method. The experimental results demonstrate that our method can achieve the data augmentation for prohibited item X-ray pseudocolor images in X-ray security inspection effectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3