Feature Extraction Approach for Speaker Verification to Support Healthcare System Using Blockchain Security for Data Privacy

Author:

Upadhyay Shrikant1ORCID,Kumar Mohit2ORCID,Kumar Ashwani3ORCID,Karnati Ramesh4,Mahommad Gouse Baig4ORCID,Althubiti Sara A.5ORCID,Alenezi Fayadh6ORCID,Polat Kemal7ORCID

Affiliation:

1. Department of Electronics & Communication Engineering, Cambridge Institute of Technology, Ranchi 834001, India

2. Department of Computer Science & Engineering, Cambridge Institute of Technology, Ranchi 834001, India

3. Department of Computer Science & Engineering, Sreyas Institute of Engineering and Technology, Hyderabad 500068, India

4. Department of CSE, Vardhaman College of Engineering, Hyderabad, India

5. Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia

6. Department of Electrical Engineering, College of Engineering, Jouf University, Saudi Arabia

7. Department of Electrical and Electronics Engineering, Faculty of Engineering, BoluAbantIzzetBaysal University, Bolu, Turkey

Abstract

Speech is one form of biometric that combines both physiological and behavioral features. It is beneficial for remote-access transactions over telecommunication networks. Presently, this task is the most challenging one for researchers. People’s mental status in the form of emotions is quite complex, and its complexity depends upon internal behavior. Emotion and facial behavior are essential characteristics through which human internal thought can be predicted. Speech is one of the mechanisms through which human’s various internal reflections can be expected and extracted by focusing on the vocal track, the flow of voice, voice frequency, etc. Human voice specimens of different ages can be emotions that can be predicted through a deep learning approach using feature removal behavior prediction that will help build a step intelligent healthcare system strong and provide data to various doctors of medical institutes and hospitals to understand the physiological behavior of humans. Healthcare is a clinical area with data concentrated where many details are accessed, generated, and circulated periodically. Healthcare systems with many existing approaches like tracing and tracking continuously disclose the system’s constraints in controlling patient data privacy and security. In the healthcare system, majority of the work involves swapping or using decisively confidential and personal data. A key issue is the modeling of approaches that guarantee the value of health-related data while protecting privacy and observing high behavioral standards. This will encourage large-scale perception, especially as healthcare information collection is expected to continue far off this current ongoing pandemic. So, the research section is looking for a privacy-preserving, secure, and sustainable system by using a technology called Blockchain. Data related to healthcare and distribution among institutions is a very challenging task. Storage of facts in the centralized form is a targeted choice for cyber hackers and initiates an accordant sight of patients’ facts which will cause a problem in sharing information over a network. So, this research paper’s approach based on Blockchain for sharing sufferer data in a secured manner is presented. Finally, the proposed model for extracting optimum value in error rate and accuracy was analyzed using different feature removal approaches to determine which feature removal performs better with different voice specimen variations. The proposed method increases the rate of correct evidence collection and minimizes the loss and authentication issues and using feature extraction based on text validation increases the sustainability of the healthcare system.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3