A Privacy-Preserving Crowd Flow Prediction Framework Based on Federated Learning during Epidemics

Author:

Wang Weiya12ORCID,Yang Geng134ORCID,Bao Lin2,Ma Ke1,Zhou Hao1

Affiliation:

1. School of Computer Science, Nanjing University of Post and Telecommunication, Nanjing, China

2. China Telecom Jiangsu Branch, Nanjing, China

3. Key Laboratory of Broadband Wireless Communication and Sensor Networks Technology of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210003, China

4. Jiangsu Key Laboratory of Big Data Security and Intelligent Processing, Nanjing, Jiangsu 210003, China

Abstract

Predicting and managing the movement of people in a region during epidemics’ outbreak is an important step in preventing outbreaks. The protection of user privacy during the outbreak has become a matter of public concern in recent years, yet deep learning models based on datasets collected from mobile devices may pose privacy and security issues. Therefore, how to develop an accurate crowd flow prediction while preserving privacy is a significant problem to be solved, and there is a tradeoff between these two objectives. In this paper, we propose a privacy-preserving mobility prediction framework via federated learning (CFPF) to solve this problem without significantly sacrificing the prediction performance. In this framework, we designed a deep and embedding learning approach called “Multi-Factors CNN-LSTM” (MFCL) that can help to explicitly learn from human trajectory data (weather, holidays, temperature, and POI) during epidemics. Furthermore, we improve the existing federated learning framework by introducing a clustering algorithm to classify clients with similar spatio-temporal characteristics into the same cluster, and select servers at the center of the cluster as edge central servers to integrate the optimal model for each cluster and improve the prediction accuracy. To address the privacy concerns, we introduce local differential privacy into the FL framework which can facilitate collaborative learning with uploaded gradients from users instead of sharing users’ raw data. Finally, we conduct extensive experiments on a realistic crowd flow dataset to evaluate the performance of our CFPF and make a comparison with other existing models. The experimental results demonstrate that our solution can not only achieve accurate crowd flow prediction but also provide a strong privacy guarantee at the same time.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3