Memetic Algorithm with Local Search as Modified Swine Influenza Model-Based Optimization and Its Use in ECG Filtering

Author:

Jadhav Devidas G.1,Pattnaik Shyam S.1,Das Sanjoy2

Affiliation:

1. National Institute of Technical Teachers’ Training & Research (NITTTR), Chandigarh 160019, India

2. Kansas State University, Manhattan, KS 66506, USA

Abstract

The Swine Influenza Model Based Optimization (SIMBO) family is a newly introduced speedy optimization technique having the adaptive features in its mechanism. In this paper, the authors modified the SIMBO to make the algorithm further quicker. As the SIMBO family is faster, it is a better option for searching the basin. Thus, it is utilized in local searches in developing the proposed memetic algorithms (MAs). The MA has a faster speed compared to SIMBO with the balance in exploration and exploitation. So, MAs have small tradeoffs in convergence velocity for comprehensively optimizing the numerical standard benchmark test bed having functions with different properties. The utilization of SIMBO in the local searching is inherently the exploitation of better characteristics of the algorithms employed for the hybridization. The developed MA is applied to eliminate the power line interference (PLI) from the biomedical signal ECG with the use of adaptive filter whose weights are optimized by the MA. The inference signal required for adaptive filter is obtained using the selective reconstruction of ECG from the intrinsic mode functions (IMFs) of empirical mode decomposition (EMD).

Publisher

Hindawi Limited

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3