Corticomuscular Coherence Analysis on Hand Movement Distinction for Active Rehabilitation

Author:

Lou Xinxin12,Xiao Siyuan13,Qi Yu13,Hu Xiaoling4,Wang Yiwen15,Zheng Xiaoxiang125

Affiliation:

1. Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang 310027, China

2. College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China

3. School of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China

4. Interdisciplinary Division of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong

5. Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310027, China

Abstract

Active rehabilitation involves patient’s voluntary thoughts as the control signals of restore device to assist stroke rehabilitation. Although restoration of hand opening stands importantly in patient’s daily life, it is difficult to distinguish the voluntary finger extension from thumb adduction and finger flexion using stroke patients’ electroencephalography (EMG) on single muscle activity. We propose to implement corticomuscular coherence analysis on electroencephalography (EEG) and EMG signals on Extensor Digitorum to extract their intention involved in hand opening. EEG and EMG signals of 8 subjects are simultaneously collected when executing 4 hand movement tasks (finger extension, thumb adduction, finger flexion, and rest). We explore the spatial and temporal distribution of the coherence and observe statistically significant corticomuscular coherence appearing at left motor cortical area and different patterns within beta frequency range for 4 movement tasks. Linear discriminate analysis is applied on the coherence pattern to distinguish finger extension from thumb adduction, finger flexion, and rest. The classification results are greater than those by EEG only. The results indicate the possibility to detect voluntary hand opening based on coherence analysis between single muscle EMG signal and single EEG channel located in motor cortical area, which potentially helps active hand rehabilitation for stroke patients.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3