Affiliation:
1. Department of Mechanical Engineering, Lappeenranta University of Technology, P.O. Box 20, 53851 Lappeenranta, Finland
Abstract
Since spherical roller bearings can carry high load in both axial and radial direction, they are increasingly used in industrial machineries and it is becoming important to understand the dynamic behavior of SRBs, especially when they are affected by internal imperfections. This paper introduces a dynamic model for an SRB that includes an inner and outer race surface defect. The proposed model shows the behavior of the bearing as a function of defect location and size. The new dynamic model describes the contact forces between bearing rolling elements and race surfaces as nonlinear Hertzian contact deformations, taking radial clearance into account. Two defect cases were simulated: an elliptical surface on the inner and outer races. In elliptical surface concavity, it is assumed that roller-to-race-surface contact is continuous as each roller passes over the defect. Contact stiffness in the defect area varies as a function of the defect contact geometry. Compared to measurement data, the results obtained using the simulation are highly accurate.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献