Construction of Metabolic Molecular Classification and Immune Characteristics for the Prognosis Prediction of Ovarian Cancer

Author:

Wang Kexin1ORCID,He Hui2ORCID,Feng Xue1ORCID

Affiliation:

1. Department of Reproductive Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150001, China

2. Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, 116000, China

Abstract

Background. Ovarian cancer (OC) is a malignant tumor that seriously threatens women’s health. Molecular classification based on metabolic genes can reflect the deeper characteristics of ovarian cancer and provide support for prognostic evaluation and the guidance of individualized treatment. Method. The metabolic subtypes were determined by consensus clustering and CDF. We used the ssGSEA method to calculate the IFNγ score of each patient. The CIBERSORT method was used to evaluate the score distribution and differential expression of 22 immune cells, and LDA was applied to establish a subtype classification feature index. The Kaplan-Meier and ROC curves were generated to validate the prognostic performance of metabolic subtypes in different cohorts. WGCNA was used to screen the coexpression modules associated with metabolic genes. Results. We obtained three metabolic subtypes (MC1, MC2, and MC3). MC2 had the best prognosis, and MC1 and MC3 had poor prognoses. Consistently, MC2 subtype had higher T cell lytic activity and lower angiogenesis, IFNγ, T cell dysfunction, and rejection scores. TIDE analysis showed that MC2 patients were more likely to benefit from immunotherapy; MC1 patients were more sensitive to immune checkpoint inhibitors and traditional chemotherapy drugs. The multiclass AUCs based on the RNASeq and GSE cohorts were 0.93 and 0.84, respectively. Finally, we screened 11 potential gene markers related to the metabolic characteristic index that could be used to indicate the prognosis of OC. Conclusion. Molecular subtypes related to metabolism are crucial to comprehensively understand the molecular pathological characteristics related to metabolism for OC development, explore reliable markers for prognosis, improve the OC staging system, and guide personalized treatment.

Funder

Science Foundation for Young Scholars of Heilongjiang Province

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3