LincRNA Cox-2 Regulates Lipopolysaccharide-Induced Inflammatory Response of Human Peritoneal Mesothelial Cells via Modulating miR-21/NF-κB Axis

Author:

Bian Yaoyao1ORCID,Yang Lili23,Zhang Bin4,Li Wen5,Wang Sen6,Jiang Shuling1,Chen Xi1,Li Wenlin3,Zeng Li23ORCID

Affiliation:

1. School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China

2. School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China

3. Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, China

4. Digestive Department, Ningbo Hospital of traditional Chinese Medicine, Ningbo, China

5. School of Preclinical Medicine, Guiyang University of Chinese Medicine, Guiyang, China

6. Department of Anorectal, Huainan Second People's Hospital, Huainan, China

Abstract

Postoperative peritoneal adhesion (PPA) is a common postoperative complication caused by any peritoneal inflammatory process. This study aimed to identify the biological function of large intergenic non-coding RNAs (lincRNAs) Cox-2 in the inflammation reaction of adhesion formation. The Cox-2 expression in peritoneal adhesion tissues and normal tissues was detected. The human peritoneal mesothelium cells (HPMCs) were treated with lipopolysaccharide (LPS) to induce inflammatory injury. The effect of Cox-2 suppression on cell viability, apoptosis and inflammatory factors of LPS induced HPMCs injury were explored. The regulatory correlation between Cox-2 and miR-21, as well as the targeted genes of miR-21 were identified. Meanwhile, the regulatory mechanism of Cox-2/miR-21 axis on NF-κB pathway was explored. It indicated that Cox-2 was highly expressed in peritoneal adhesion tissues compared with that in normal tissues. Suppression of Cox-2 ameliorated LPS induced HMPCs injury as cell viability was promoted, and cell apoptosis and the production of inflammatory factors were inhibited. And suppression of Cox-2 reversed the LPS induced HPMCs injury by regulation of miR-21 negatively. miR-21 was negatively correlated with TLR4, and TLR4 was predicted as target gene of miR-21. Furthermore, the suppression of miR-21 on LPS induced HPMCs injury was reversed by knockdown of TLR4, which could inhibited the activation of NF-κB pathway axis. It suggested that the effect of Cox-2 on LPS induced HPMCs injury was achieved by negatively regulation of miR-21 and targeted TLR4 through NF-κB pathway axis. The findings may provide a new insight into preventing postoperative peritoneal adhesion.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3