Fluid Phase Simulation and Evolution of a Condensate Gas Reservoir in the Tazhong Uplift, Tarim Basin

Author:

Deng Rui12,Chen Chengsheng12,Shi Shuyong12,Wang Yunpeng1ORCID

Affiliation:

1. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

2. University of Chinese Academy of Sciences, Beijing 100039, China

Abstract

The fluid phase and the evolution of the condensate gas reservoir in the Lianglitage Formation (O3), Well ZG7-5, Tazhong Uplift, were studied by integrating the PVTsim and the PetroMod software. The fluid phase was successfully simulated, and the burial, temperature, pressure, and pressure coefficient histories were reconstructed. The evolution of the fluid phase and its properties (density, viscosity, and gas-oil ratio) under the ideal and gas washing conditions was also explored. The simulated pressure-temperature (PT) phase diagram confirms that the reservoir fluid is in the condensate gas phase at present, with an order of critical point-cricondenbar-cricondentherm (CPPmTm). The temperature and pressure show an overall increasing trend considering the entirety of geological evolution. Under ideal conditions, fluid transition from coexisting gas and liquid phases to a single condensate gas phase occurred during the Late Cretaceous (80 Ma, T=135.7°C, and P=58.19MPa). The density and viscosity of the liquid phase decreased gradually while the density and viscosity of the gas phase and the solution gas-oil ratio increased during geological processes. With the consideration of gas washing, the critical phase transition time points for 100% and 50% gas washing fluid are 394 Ma, 383 Ma, 331 Ma, and 23 Ma, as well as 266 Ma and 23 Ma, respectively. The average liquid phase density, gas phase density, and liquid phase viscosity under 100% gas washing are larger than those under 50% gas washing before 23 Ma (Miocene), while the gas phase viscosity values are similar for both cases. This study visually suggests that the temperature and pressure histories, which are controlled by the burial history and heat flow evolution, and gas washing have significant impacts on the formation of the condensate gas reservoirs and evolution of the fluid phase and its features in the Tazhong Uplift.

Funder

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3