Deep Learning Based Proactive Caching for Effective WSN-Enabled Vision Applications

Author:

Lei Fangyuan12ORCID,Cai Jun1ORCID,Dai Qingyun12,Zhao Huimin3ORCID

Affiliation:

1. School of Electronic and Information, Guangdong Polytechnic Normal University, Guangzhou 510640, China

2. School of Information Engineering, Guangdong University of Technology, Guangzhou, China

3. School of Computer Sciences, Guangdong Polytechnic Normal University, Guangzhou 510640, China

Abstract

Wireless Sensor Networks (WSNs) have a wide range of applications scenarios in computer vision, from pedestrian detection to robotic visual navigation. In response to the growing visual data services in WSNs, we propose a proactive caching strategy based on Stacked Sparse Autoencoder (SSAE) to predict content popularity (PCDS2AW). Firstly, based on Software Defined Network (SDN) and Network Function Virtualization (NFV) technologies, a distributed deep learning network SSAE is constructed in the sink nodes and control nodes of the WSN network. Then, the SSAE network structure parameters and network model parameters are optimized through training. The proactive cache strategy implementation procedure is divided into four steps. (1) The SDN controller is responsible for dynamically collecting user request data package information in the WSNs network. (2) The SSAEs predicts the packet popularity based on the SDN controller obtaining user request data. (3) The SDN controller generates a corresponding proactive cache strategy according to the popularity prediction result. (4) Implement the proactive caching strategy at the WSNs cache node. In the simulation, we compare the influence of spatiotemporal data on the SSAE network structure. Compared with the classic caching strategy Hash + LRU, Betw + LRU, and classic prediction algorithms SVM and BPNN, the proposed PCDS2AW proactive caching strategy can significantly improve WSN performance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3