Semantic-Based Sports Music Information Fusion and Retrieval in Wireless Sensor Networks

Author:

Yu Qiaolin1,Liu Xiaofei2,Li Sihui1,Hou Lei1,Zhu Chengdong2ORCID,Lin Ying3

Affiliation:

1. School of Music, Liaoning Normal University, Dalian, 116021 Liaoning, China

2. School of Sport, Liaoning Normal University, Dalian, 116021 Liaoning, China

3. Omnimedia Tech Center, Shenyang Radio and Television Station, Shenyang, 110300 Liaoning, China

Abstract

The wireless sensor network has developed rapidly in recent years. It is formed by the intersection of multiple disciplines. It integrates embedded technology, sensor technology, distributed technology, wireless communication technology, and modern networks. It is a brand new information acquisition platform. The characteristics of sensor networks determine that information fusion technology is a hot spot in the research of wireless sensor networks. Information fusion can achieve high performance and low cost in terms of energy and communication, which is of great significance to the research of sensor networks. This paper is aimed at studying the semantic-based sports music information fusion and retrieval research in wireless sensor networks. WSNs may face various attacks including eavesdropping attacks, replay attacks, Sybil attacks, and DOS attacks. Therefore, they are designing sensor network solutions. It is necessary to consider the network security issues. This article summarizes and analyzes the existing WSN security data fusion solutions for this issue and compares them by classification. This paper proposes methods and theories such as the spatial correlation detection algorithm, CBA algorithm, FTD algorithm, and DFWD algorithm, which enriches the research of information fusion and retrieval in wireless sensor networks, which is of exploratory significance, and it also establishes this problem. The model was studied, and reliable data was obtained. The experimental results of this paper show that when using these methods to diagnose faults in WSN, the correct rate of model diagnosis is higher than 77%.

Funder

Liaoning Provincial Social Science Youth Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3