Analysis of Digital Long Jump Take-off Wearable Sensor Monitoring System

Author:

Wang Baosen12,Zong Bobo3ORCID,Wang Hongwei2ORCID,Han Bo4ORCID

Affiliation:

1. College of P.E. and Sports, Beijing Normal University, Beijing 100875, China

2. College of Physical Education, Northwest Normal University, Lanzhou, Gansu 730070, China

3. School of P.E, China University of Geosciences, Wuhan, Hubei 430074, China

4. College of Physical Education, Lanzhou City University, Lanzhou, Gansu 730070, China

Abstract

The wearable sensor monitoring system builds a long jump take-off recognition network model based on different digital feature extraction methods (one-dimensional digital feature extraction method, two-dimensional digital feature extraction method, and feature extraction method combining one-dimensional digitization and recursion). Experimental verification and analysis are performed on the processed sample data, and the identification effects, advantages, and disadvantages of the four methods are obtained. First, the sensor behavior movement collection software is designed based on the Android system, and the collection time and frequency are specified at the same time. In addition, for the problem of multisensor behavior recognition, an effective result fusion method is proposed. In a multisensor behavior recognition system, constructing a parallel processing architecture is conducive to improving the rate of behavior recognition. To maintain or increase the rate of behavior recognition, the result fusion method plays a vital role. Finally, this paper analyzes the process of multitask behavior recognition and constructs a residual model that can effectively integrate multitask results and fully mine data information. The experimental results show that, for the monitoring of exercise volume, we use step count statistics to extract feature values that can distinguish activity types based on human motion characteristics. This paper proposes a sample autonomous learning method to find the optimal sample training set and avoid occurrence of overfitting problems. In the recognition of 11 types of long jump take-offs, the average accuracy rate reached 98.7%. The average replacement method is used to count the number of steps, which provides a data reference for the user’s daily exercise volume.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3