Identification of lncRNA Biomarkers and LINC01198 Promotes Progression of Chronic Rhinosinusitis with Nasal Polyps through Sponge miR-6776-5p

Author:

Wang Xueping1ORCID,Zhu Xiaoyuan1,Peng Li2,Zhao Yulin1

Affiliation:

1. Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 410000, China

2. Department of Obstetrics and Gynecology, The First People's Hospital of Nanyang, Nanyang, Henan, 473000, China

Abstract

Background. Chronic sinusitis (CRS) was a chronic inflammation that originated in the nasal mucosa and affected the health of most people around the world. Chronic rhinosinusitis with nasal polyps (CRSwNP) was one kind of chronic sinusitis. Emerging research had suggested that long noncoding RNAs (lncRNAs) played vital parts in inflammatories and inflammation development. Methods. We acquired GEO data to analyze the differential expression between the miRNA, immune genes, TF, and lncRNA data in CRSWNP and the corresponding control tissues. Bioinformatic analysis by coexpression of endogenous RNA network and competitive way enrichment, analysis, and forecasting functions of these noncoding RNA. The different pathway expressions in CRSwNP patients were confirmed using GSVA to analyze the differentially expressed immune genes and TF data sets in CRSwNP patients. The differential immune gene and transcription factor data set in CRSwNP perform functional notes and protein-protein interaction (PPI) network structure. We predicted the potential genes and RNAs related to CRSWNP by constructing a ceRNA network. In addition, we also used 19 hub immune genes to predict the potential drugs of CRSWNP. lncRNA biomarkers in CRSwNP were identified by lncRNAs LASSO regression. The CIBERSORT algorithm was used to contrast the divergence in immune infiltrations between CRSwNP and usual inferior turbinate organizations in 22 immunocyte subgroups. Results. We identified a total of 48 miRNAs, 304 lncRNAs, 92 TFs, and 525 immune genes as CRSwNP-specific RNAs. GO and KEGG pathways both analyzed differentially expressed immune genes and transcription factor data sets. We predicted the potential genes GNG7, TUSC8, LINC01198, and has-miR-6776-5p by constructing ceRNA and PPI networks. At the same time, we found that the above genes were involved in two important pathways: chemokine signal path and PI3K/AKT signal path. In addition, we predicted 5 small molecule drugs to treat CRSwNP by analyzing 19 central immune genes, namely, danazol, ikarugamycin, semustine, cefamandole, and molindone. Finally, we identified 5 biomarkers in CRSwNP, namely, LINC01198, LINC01094, LINC01798, LINC01829, and LINC01320. Conclusions. We had identified CRSwNP-related miRNAs, lncRNAs, TFs, and immune genes, which may be making use of latent therapeutic target for CRSwNP. At the same time, we identified 5 lncRNA biomarkers in CRSwNP. The results of this study showed that LINC01198 promoted the progression of CRSwNPs through spongy miR-6776-5p. Our studies provide a new way for further analyses of the pathogenesis of CRSwNP.

Funder

Henan Natural Science Foundation

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3