Preparation and Multitarget Anti-AD Activity Study of Chondroitin Sulfate Lithium in AD Mice Induced by Combination of D-Gal/AlCl3

Author:

Gao Debo1,Li Pingli23,Gao Fei4,Feng Yangjun1,Li Xiaolin1,Li Delong1,Li Yuqin1,Xiao Yuliang1ORCID

Affiliation:

1. Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China

2. Phase I Clinical Trial Center, Qilu Hospital of Shandong University, China

3. NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan 25000, China

4. Taibang Biologic Group Co., Ltd., Taian, 271000 Shandong, China

Abstract

Previous studies have demonstrated that both CS and LiCl possess anti-Alzheimer’s disease (AD) activities. We prepared chondroitin sulfate-Li (CS-Li) and investigated its effect on AD and explored the possible mechanisms both in vitro and in vivo. We found that CS-Li could inhibit amyloid β (Aβ) aggregation and protect SH-SY5Y cells from Aβ1-42-induced cytotoxicity in vitro. In D-gal and AlCl3-induced AD mouse model, CS-Li improves the spatial learning and memory abilities of AD mice, reverses the nuclear pyknosis and cell edema, and increases the survival rate of neurons in hippocampus of mice. Moreover, CS-Li significantly increased the levels of GSH-Px, Na+/K+-ATPase, and ChAT and decreased the levels of MDA and AchE in AD mice. Western blot results demonstrated that CS-Li could decrease the hyperphosphorylation of tau (Ser396/Ser404) by regulating the expression of p-GSK-3β (Ser9) and PP2A and inhibit the expression of proinflammatory factors through inhibiting NF-κB nuclear translocation by activating the MAPK signaling pathways. In a word, CS-Li can delay AD development through multitarget processes, including Aβ aggregation inhibition, oxidative stress damage, tau hyperphosphorylation, and inflammatory response, thereby improves learning and memory abilities.

Funder

Shandong First Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3