A Survival Status Classification Model for Osteosarcoma Patients Based on E-CNN-SVM and Multisource Data Fusion

Author:

Zhang Qiang1ORCID,Peng Peng1ORCID,Gu Yi1ORCID

Affiliation:

1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China

Abstract

Traditional algorithms have the following drawbacks: (1) they only focus on a certain aspect of genetic data or local feature data of osteosarcoma patients, and the extracted feature information is not considered as a whole; (2) they do not equalize the sample data between categories; (3) the generalization ability of the model is weak, and it is difficult to perform the task of classifying the survival status of osteosarcoma patients better. In this context, this paper designs a survival status prediction model for osteosarcoma patients based on E-CNN-SVM and multisource data fusion, taking into full consideration the characteristics of the small number of samples, high dimensionality, and interclass imbalance of osteosarcoma patients’ genetic data. The model fuses four gene sequencing data highly correlated with bone tumors using the random forest algorithm in a dimensionality reduction and then equalizes the data using a hybrid sampling method combining the SMOTE algorithm and the TomekLink algorithm; secondly, the CNN model with the incentive module is used to further extract features from the data for more accurate extraction of characteristic information; finally, the data are passed to the SVM model to further improve the stability and classification performance of the model. The model has been demonstrated to be more effective in improving the accuracy of the classification of patients with osteosarcoma.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3