Hierarchical Recognition System for Target Recognition from Sparse Representations

Author:

Cui Zongyong1,Cao Zongjie1,Yang Jianyu1,Ren Hongliang2

Affiliation:

1. School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Faculty of Engineering and Advanced Robotics Centre, National University of Singapore, Singapore 117575

Abstract

A hierarchical recognition system (HRS) based on constrained Deep Belief Network (DBN) is proposed for SAR Automatic Target Recognition (SAR ATR). As a classical Deep Learning method, DBN has shown great performance on data reconstruction, big data mining, and classification. However, few works have been carried out to solve small data problems (like SAR ATR) by Deep Learning method. In HRS, the deep structure and pattern classifier are combined to solve small data classification problems. After building the DBN with multiple Restricted Boltzmann Machines (RBMs), hierarchical features can be obtained, and then they are fed to classifier directly. To obtain more natural sparse feature representation, the Constrained RBM (CRBM) is proposed with solving a generalized optimization problem. Three RBM variants,L1-RNM,L2-RBM, andL1/2-RBM, are presented and introduced to HRS in this paper. The experiments on MSTAR public dataset show that the performance of the proposed HRS with CRBM outperforms current pattern recognition methods in SAR ATR, like PCA + SVM, LDA + SVM, and NMF + SVM.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3