Composition and Modifications of Dental Implant Surfaces

Author:

Bruschi Michela1,Steinmüller-Nethl Doris2,Goriwoda Walter1,Rasse Michael1

Affiliation:

1. Department for Cranio-Maxillofacial and Oral Surgery, Medical University of Innsbruck, Maximilianstrasse 10, 6020 Innsbruck, Austria

2. DiaCoating GmbH, Mitterweg 24, 6020 Innsbruck, Austria

Abstract

Since Brånemark discovered the favorable effects of titanium in bone healing in 1965, titanium has emerged as the gold standard bulk material for present-time dental implantology. In the course of years researchers aimed for improvement of the implants performance in bone even at compromised implant sites and multiple factors were investigated influencing osseointegration. This review summarizes and clarifies the four factors that are currently recognized being relevant to influence the tissue-implant contact ratio: bulk materials and coatings, topography, surface energy, and biofunctionalization. The macrodesigns of bulk materials (e.g., titanium, zirconium, stainless steel, tantalum, and magnesium) provide the mechanical stability and their influence on bone cells can be additionally improved by surface treatment with various materials (calcium phosphates, strontium, bioglasses, diamond-like carbon, and diamond). Surface topography can be modified via different techniques to increase the bone-implant contact, for example, plasma-spraying, grit-blasting, acid-etching, and microarc oxidation. Surface energy (e.g., wettability and polarity) showed a strong effect on cell behavior and cell adhesion. Functionalization with bioactive molecules (via physisorption, covalent binding, or carrier systems) targets enhanced osseointegration. Despite the satisfying clinical results of presently used dental implant materials, further research on innovative implant surfaces is inevitable to pursuit perfection in soft and hard tissue performance.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3