Affiliation:
1. School of Computer Science and Technology, Hefei Normal University, Hefei 230601, China
Abstract
The existing deep learning models have problems such as large weight parameters and slow inference speed of equipment. In practical applications such as fire detection, they often cannot be deployed on equipment with limited resources due to the huge amount of parameters and low efficiency. In response to this problem, this paper proposes a lightweight smoke detection model based on the convolutional attention mechanism module. The model is based on the YOLOv5 lightweight framework. The backbone network draws on the GhostNet design idea, replaces the CSP structure of the FPN and head layers with the GhostBottleNeck module, adds a convolutional attention mechanism module to the backbone network layer, and uses the CIoU loss function to improve the regression accuracy. Using YOLOv5s as the benchmark model, the parameter amount of the proposed lightweight neural network model is 2.75 M, and the floating-point calculation amount is 2.56 G, which is much lower than the parameter amount and calculation amount of the benchmark model. Tested on the public fire dataset, compared with the traditional deep learning algorithm, the model proposed in the paper has better detection performance and the detection speed is significantly better than the benchmark model. Tested under the unquantized simulator, the speed of the proposed model to detect a single picture is 60 ms, which can meet the requirements of real-time engineering applications.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献