A Mathematical Queuing Model Analysis Using Secure Data Authentication Framework for Modern Healthcare Applications

Author:

Raj A. Samson Arun1,Venkatesan R.1,Malathi S.2,Kumar V. D. Ambeth3ORCID,Thenmozhi E.4,Dhandapani Anbarasu5ORCID,Kumar M. Ashok6,Chitra B.3

Affiliation:

1. Computer Science and Engineering, Karunya University, Coimbatore 641114, India

2. Artificial Intelligence and Data Science, Panimalar Engineering College, Anna University, Chennai 600123, India

3. Computer Science & Engineering, Panimalar Engineering College, Anna University, Chennai 600123, India

4. Department of Information Technology, Panimalar Institute of Technology, Anna University, Chennai 600123, India

5. Department of Electrical and Computer Engineering, Institute of Technology, Jigjiga University, 1020 Somali, Ethiopia

6. Faculty of Computer Science and Software Engineering, Skyline University Nigeria (SUN), Kano, Nigeria

Abstract

Healthcare application is one of the most promising developments to provide on-time demand services to the end users, vehicles, and other Road Side Units (RSUs) in the urban environment. In recent years, several application interfaces have been developed to connect, communicate, and share the required services from one source to another. However, the urban environment holds a complex entity of both homogenous and heterogeneous devices to which the communication/sensing range between the devices leads to connectivity breakage, lack of needed service in time, and other environmental constraints. Also, security plays a vital role in allowing everyone in the urban area to access/request services according to their needs. Again, this leads to a massive breakthrough in providing reliable service to authentic users or a catastrophic failure of service denial involving unauthorized user access. This paper proposes a novel topological architecture, Secure Authentication Relay-based Urban Network (S-ARUN), designed for healthcare and other smart city applications for registered transportation stakeholders. The registered stakeholders hold a built-in data security framework with three subsystems connected to the S-ARUN topology: (1) authentication subsystem: the stakeholder must identify themselves to the source responder as part of the authentication subsystem before transmitting the actual data service request; (2) connectivity subsystem: to periodically check the connection state of stakeholders as they travel along with the road pattern; and (3) service subsystem: each source responder will keep a separate queue for collecting data service requests, processing them quickly, and sending the results to the appropriate stakeholder. The Kerberos authentication method is used in working with S-ARUN’s model to connect the stakeholders securely and legitimately. The performance of the proposed S-ARUN is assessed, and the performance metric toward key generation and other data security-related metrics is tested with existing schemes.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3