Prediction Model of Stress Intensity Factor of Circumferential Through Crack in Elbow Based on Neural Network

Author:

Li Xiaohong12ORCID,Li Xianghui1,Chen Bin1

Affiliation:

1. Liaoning Petrochemical University, Fushun, Liaoning 113001, China

2. China University of Petroleum (East China), Qingdao, Shandong 266000, China

Abstract

Using ANSYS software to establish the finite element model of crack bending tube, the SIF at the tip of the crack is calculated for the difference in the diameter of the pipe, the outer diameter of the elbow, and the bending angle of the bend pipe, and it is used as a neural network to calculate the sample. By using three layers of BP network to establish the prediction model of the SIF of cracked pipe, the simulation of 39 sets of samples proves that the relative error of the BP network model is 0.19% and the mean square error of the network output is 0.0102. The prediction model has high prediction precision and generalization ability and can be used in engineering design and calculation.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference15 articles.

1. Study on the Development Height of Overburden Water-Flowing Fracture Zone of the Working Face

2. Estimation of Stress Intensity Factors for Semi-elliptical Surface cracks;T. Fett;Engineering Fracture Mechanicals,2000

3. Stress intensity formulas for three-dimensional cracks in homogeneous and bonded dissimilar materials

4. Computation of crack stress intensity factor based on FEM;B. Qiao;Journal of Xi'an University of Science and Technology,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3