Heterogeneous Graph Convolutional Network-Based Dynamic Rumor Detection on Social Media

Author:

Yu Dingguo12ORCID,Zhou Yijie13ORCID,Zhang Suiyu2ORCID,Liu Chang13ORCID

Affiliation:

1. Key Lab of Film and TV Media Technology of Zhejiang Province, Communication University of Zhejiang, Hangzhou 310018, China

2. College of Media Engineering, Communication University of Zhejiang, Hangzhou 310018, China

3. Institute of Intelligent Media Technology, Communication University of Zhejiang, Hangzhou 310018, China

Abstract

The development of social media has provided open and convenient platforms for people to express their opinions, which leads to rumors being circulated. Therefore, detecting rumors from massive information becomes particularly essential. Previous methods for rumor detection focused on mining features from content and propagation patterns but neglected the dynamic features with joint content and propagation pattern. In this paper, we propose a novel heterogeneous GCN-based method for dynamic rumor detection (HDGCN), mainly composed of a joint content and propagation module and an ODE-based dynamic module. The joint content and propagation module constructs a content-propagation heterogeneous graph to obtain rumor representations by mining and discovering the interaction between post content and propagation structures in the rumor propagation process. The ODE-based dynamic module leverages a GCN integrated with an ordinary differential system to explore dynamic features of heterogeneous graphs. To evaluate the performance of our proposed HDGCN model, we have conducted extensive experiments on two real-world datasets from Twitter. The results of our proposed model have outperformed the mainstream model.

Funder

Humanities and Social Sciences Project of the Ministry of Education

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3