Affiliation:
1. Department of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
Abstract
The performance of fixed satellite systems in the shared frequency band depends on the tolerance level of interference between them. Interference disturbs the functionality of the ground station and causes signal degradation. The knowledge of interference level must therefore be known for an optimal satellite design. In this work, we evaluate interference due to hydrometeors for a situation in which a satellite downlink signal is affected by the signal from a terrestrial microwave network operating at the same frequency as the satellite system in a subtropical station: Durban, South Africa. The evaluation of the transmission loss is based on the modified 3D bistatic radar equation and the exponential rain cell model for the scattering. The results of intersystem interference for different station separation over frequencies variation, terrestrial antenna gains, and exceedance probabilities are presented. The effect of the additional rain attenuation(Aw)on the satellite signals is also examined. The results point out to some remarkable attenuation differences between the effective transmission loss and the transmission loss statistics for small time unavailability at the frequencies considered in this work. This could be detrimental in link budget design if overlooked.
Subject
Electrical and Electronic Engineering