Affiliation:
1. Computer Game/Culture Technology Lab, Graduate School of Advanced Imaging Science, Multimedia & Film, Chung-Ang University, Seoul 06974, Republic of Korea
Abstract
A point set registration algorithm based on improved Kullback–Leibler (KL) divergence is proposed. Each point in the point set is represented as a Gaussian distribution. The Gaussian distribution contains the position information of the candidate point and surrounding ones. In this way, the entire point set can be modeled as a Gaussian mixture model (GMM). The registration problem of two point sets is further converted as a minimization problem of the improved KL divergence between two GMMs, and the genetic algorithm is used to optimize the solution. Experimental results show that the proposed algorithm has strong robustness to noise, outliers, and missing points, which achieves better registration accuracy than some state-of-the-art methods.
Subject
Computer Science Applications,Software