A Predictive Disease Risk Model for Ankylosing Spondylitis: Based on Integrated Bioinformatic Analysis and Identification of Potential Biomarkers Most Related to Immunity

Author:

Gao Wenxin1ORCID,Hou Ruirui1,Chen Yungang1,Wang Xiaoying2,Liu Guoyan3,Hu Wanli4,Yao Kang1,Hao Yanke3ORCID

Affiliation:

1. Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China

2. Jinan Vocational College of Nursing, Jinan, Shandong Province, China

3. Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China

4. The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China

Abstract

Background. The pathogenesis of ankylosing spondylitis (AS) is still not clear, and immune-related genes have not been systematically explored in AS. The purpose of this paper was to identify the potential early biomarkers most related to immunity in AS and develop a predictive disease risk model with bioinformatic methods and the Gene Expression Omnibus database (GEO) to improve diagnostic and therapeutic efficiency. Methods. To identify differentially expressed genes and create a gene coexpression network between AS and healthy samples, we downloaded the AS-related datasets GSE25101 and GSE73754 from the GEO database and employed weighted gene coexpression network analysis (WGCNA). We used the GSVA, GSEABase, limma, ggpubr, and reshape2 packages to score immune data and investigated the links between immune cells and immunological functions by using single-sample gene set enrichment analysis (ssGSEA). The value of the core gene set and constructed model for early AS diagnosis was investigated by using receiver operating characteristic (ROC) curve analysis. Results. Biological function and immune score analyses identified central genes related to immunity, key immune cells, key related pathways, gene modules, and the coexpression network in AS. Granulysin (GNLY), Granulysin (GZMK), CX3CR1, IL2RB, dysferlin (DYSF), and S100A12 may participate in AS development through NK cells, CD8+ T cells, Th1 cells, and other immune cells and represent potential biomarkers for the early diagnosis of AS occurrence and progression. Furthermore, the T cell coinhibitory pathway may be involved in AS pathogenesis. Conclusion. The AS disease risk model constructed based on immune-related genes can guide clinical diagnosis and treatment and may help in the development of personalized immunotherapy.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3