Application of Variational Mode Decomposition and Multiscale Permutation Entropy in Rolling Bearing Failure Analysis

Author:

Liu Haorui1ORCID,Li Haijun1,Wang Rongyan1,Zhu Hengwei1,Zhang Jianchen1

Affiliation:

1. College of Computer and Information, Dezhou University, Dezhou, Shandong 253500, China

Abstract

The rolling bearing fault test signal has nonstationary and nonlinear characteristics. The feature extraction method based on variational mode decomposition (VMD) and permutation entropy can effectively measure the regularity of the signal and detect weak changes. Since the center frequency of the intrinsic mode function (IMF) of each fault test signal contains more details, this paper further extracts the multiscale permutation entropy feature for each IMF. The training samples and test samples of each IMF are constructed, and then the support vector machine (SVM) and the K-nearest neighbor algorithm (KNN) are used to identify the faults. The test results of the IMF components are used to determine the classification results combined with the maximum attribution index. Compared with the relevant feature extraction, the experimental results show that the method achieves a certain improvement in the accuracy of fault identification. The research results of rolling bearing fault data show that the multiscale permutation entropy and SVM/KNN can more accurately diagnose different fault modes, different fault sizes, and different operating states of rolling bearings.

Funder

Hebei University of Engineering

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference25 articles.

1. A Mathematical Theory of Communication

2. New metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces;A. N. Kolmogorov;Doklady of Russian Academy of Sciences,1958

3. On the notion of entropy of a dynamical systems;Y. G. Sinai;Doklady of Russian Academy of Sciences,1959

4. A regularity statistic for medical data analysis

5. Physiological time-series analysis using approximate entropy and sample entropy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3