Epigallocatechin Gallate Relieved PM2.5-Induced Lung Fibrosis by Inhibiting Oxidative Damage and Epithelial-Mesenchymal Transition through AKT/mTOR Pathway

Author:

Zhongyin Zhou1,Wei Wang2,Juan Xiong2ORCID,Guohua Fan2ORCID

Affiliation:

1. Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China

2. Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China

Abstract

Oxidative damage and epithelial-mesenchymal transition (EMT) are main pathological processes leading to the development of PM2.5-induced lung fibrosis. Epigallocatechin gallate (EG), a natural polyphenol extracted from green tea, possesses the ability to combat oxidative stress and inflammation. However, the potential roles of EG in PM2.5-induced lung fibrosis have not been reported yet. In the present study, we investigated whether EG could relieve PM2.5-induced lung injury and fibrosis in vivo and in vitro. To mimic PM2.5-induced lung fibrosis, C57/BL6 mice were intranasally instilled with PM2.5 suspension, and MLE-12 lung epithelial cells were stimulated with PM2.5 (100 μg/mL) in vitro. The results showed that intragastric administration of EG (20 mg/kg/d or 80 mg/kg/d for 8 weeks) significantly prevented lung injury, inflammation, and oxidative stress in PM2.5-induced mice, apart from inhibiting collagen deposition. Additionally, EG treatment also suppressed the activation of AKT/mTOR signaling pathway in lung tissues challenged with PM2.5. In vitro experiments further demonstrated that EG treatment could enhance cell viability in a concentration-dependent manner in PM2.5-treated MLE-12 lung epithelial cells. Also, the overexpression of constitutively active AKT could offset the inhibitory effects of EG on EMT and oxidative stress in PM2.5-treated MLE-12 lung epithelial cells. Finally, AKT overexpression also blocked the inhibitory effect of EG on the phosphorylation of mTOR in PM2.5-treated MLE-12 lung epithelial cells. In conclusion, EG could improve PM2.5-induced lung fibrosis by decreasing oxidative damage and EMT through AKT/mTOR pathway, which might be a potential candidate for the treatment of PM2.5-induced lung fibrosis.

Funder

Key Laboratory Opening Project of Hubei Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3