Regulation of Cr(VI)-Induced Premature Senescence in L02 Hepatocytes by ROS-Ca2+-NF-κB Signaling

Author:

Zhang Yujing1ORCID,Yang Gang1ORCID,Huang Shuai1ORCID,Yang Xinyue1ORCID,Yuan Fengyan1ORCID,Song Yinghui2ORCID,Liu Sulai2ORCID,Yu Xing134ORCID

Affiliation:

1. Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China

2. Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410015, China

3. Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China

4. Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia

Abstract

Stress-induced premature senescence may be involved in the pathogeneses of acute liver injury. Hexavalent chromium [Cr(VI)], a common environmental pollutant related to liver injury, likely leads to premature senescence in L02 hepatocytes. However, the underlying mechanisms regarding hepatocyte premature senility in Cr(VI) exposure remain poorly understood. In this study, we found that chronic exposure of L02 hepatocytes to Cr(VI) led to premature senescence characterized by increased β-galactosidase activity, senescence-associated heterochromatin foci, G1 phase arrest, and decreased cell proliferation. Additionally, Cr(VI)-induced senescent L02 hepatocytes showed upregulated inflammation-related factors, such as IL-6 and fibroblast growth factor 23 (FGF23), which also exhibited reactive oxygen species (ROS) accumulation derived from mitochondria accompanied with increased concentration of intracellular calcium ions (Ca2+) and activity of nuclear factor kappa B (NF-κB). Of note is that ROS inhibition by N-acetyl-Lcysteine pretreatment not only alleviated Cr(VI)-induced premature senescence but also reduced the elevated intracellular Ca2+, activated NF-κB, and secretion of IL-6/FGF23. Intriguingly, the toxic effect of Cr(VI) upon premature senescence of L02 hepatocytes and increased levels of IL-6/FGF23 could be partially reversed by the intracellular Ca2+ chelator BAPTA-AM pretreatment. Furthermore, by utilizing the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC), we confirmed that NF-κB mediated IL-6/FGF23 to regulate the Cr(VI)-induced L02 hepatocyte premature senescence, whilst the concentration of intracellular Ca2+ was not influenced by PDTC. To the best of our knowledge, our data reports for the first time the role of ROS-Ca2+-NF-κB signaling pathway in Cr(VI)-induced premature senescence. Our results collectively shed light on further exploration of innovative intervention strategies and treatment targeting Cr(VI)-induced chronic liver damage related to premature senescence.

Funder

Hunan Normal University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3