An Image Defogging Approach Based on a Constrained Energy Functional under Bayesian and Variation Theories

Author:

Zhou Li1,Bi Du-Yan1,He Lin-Yuan1

Affiliation:

1. Communication and Navigation Laboratory, Aerospace Engineering College, Air Force Engineering University, Xi’an 710038, China

Abstract

Hazy images produce negative influences on visual applications in the open air since they are in poor visibility with low contrast and whitening color. Numerous existing methods tend to derive a totally rough estimate of scene depth. Unlike previous work, we focus on the probability distribution of depth that is considered as a scene prior. Inspired by the denoising work of multiplicative noises, the inverse problem for hazy removal is recast as deriving the optimal difference between scene irradiance and the airlight from a constrained energy functional under Bayesian and variation theories. Logarithmic maximum a posteriori estimator and a mixed regularization term are introduced to formulate the energy functional framework where the regularization parameter is adaptively selected. The airlight, another unknown quantity, is inferred precisely under a geometric constraint and dark channel prior. With these two estimates, scene irradiance can be recovered. The experimental results on a series of hazy images reveal that, in comparison with several relevant and most state-of-the-art approaches, the proposed method outperforms in terms of vivid color and appropriate contrast.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3