Optimized Quality of Service for Real-Time Wireless Sensor Networks Using a Partitioning Multipath Routing Approach

Author:

Hasan Mohammed Zaki12ORCID,Wan Tat-Chee13ORCID

Affiliation:

1. School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia

2. College of Computer Sciences and Mathematics, University of Mosul, Mosul 41002, Iraq

3. National Advanced IPv6 Centre (NAV6), Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia

Abstract

Multimedia sensor networks for real-time applications have strict constraints on delay, packet loss, and energy consumption requirements. For example, video streaming in a disaster-management scenario requires careful handling to ensure that the end-to-end delay is within the acceptable range and the video is received properly without any distortion. The failure to transmit a video stream effectively occurs for many reasons, including sensor function limitations, excessive power consumption, and a lack of routing reliability. We propose a novel mathematical model for quality of service (QoS) route determination that enables a sensor to determine the optimal path for minimising resource use while satisfying the required QoS constraints. The proposed mathematical model uses the Lagrangian relaxation mixed integer programming technique to define critical parameters and appropriate objective functions for controlling the adaptive QoS constrained route discovery process. Performance trade-offs between QoS requirements and energy efficiency were simulated using the LINGO mathematical programming language. The proposed approach significantly improves the network lifetime, while reducing energy consumption and decreasing average end-to-end delays within the sensor network via optimised resource sharing in intermediate nodes compared with existing routing algorithms.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3