Successive Vaccination and Difference in Immunity of a Delay SIR Model with a General Incidence Rate

Author:

Pei Yongzhen1,Changguo Li2,Wu Qianyong1,Lv Yunfei3

Affiliation:

1. School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin 300387, China

2. Department of Basic Science, Military Transportation University, Tianjin 300161, China

3. School of Science, Tianjin Polytechnic University, Tianjin 300387, China

Abstract

A delay SIR epidemic model with difference in immunity and successive vaccination is proposed to understand their effects on the disease spread. From theorems, it is obtained that the basic reproduction number governs the dynamic behavior of the system. The existence and stability of the possible equilibria are examined in terms of a certain threshold condition about the basic reproduction number. By use of new computational techniques for delay differential equations, we prove that the system is permanent. Our results indicate that the recovery rate and the vaccination rate are two factors for the dynamic behavior of the system. Numerical simulations are carried out to investigate the influence of the key parameters on the spread of the disease, to support the analytical conclusion, and to illustrate possible behavioral scenarios of the model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3