Investigation of the Polycrystalline Silicon PV Cell Efficiency in 3D Approximation versus Electromagnetic Field under Monochromatic Illumination

Author:

Ouedraogo Adama12ORCID,Soro Boubacar13,Konate Ramatou1,Oumarou Fati Amadou1,Bathiebo Dieudonné Joseph1

Affiliation:

1. Laboratory of Thermal and Renewable Energies, Department of Physics, Unit of Training and Research in Pure and Applied Sciences, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso

2. Centre Universitaire Polytechnique de Kaya (CUP-Kaya), PO Box 232 Kaya, Burkina Faso

3. Institut des Sciences (IDS), Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso

Abstract

This manuscript is about the electric output of the silicon (Si) photovoltaic (PV) cell versus the electromagnetic field of a radio wave and a monochromatic illumination in three-dimensional (3D) assumptions. The polarisation direction of the electromagnetic wave and power density are fixed. The electromagnetic wave is provided by electromagnetic emission sources such as the telecommunication, radio, or TV antennas. A PV system is installed in the vicinity of an electromagnetic emission source. The current produced by the PV cell is sensitive to electromagnetic field increase more than the electric voltage. The electromagnetic field causes the decomposition of the current into two components which are a transferred current and a leakage current. The transferred component provides the transmitted current to the external load while the leakage component gives the loss of the carrier charge into the junction. Consequently, this decomposition of the current shares the electric power in transferred electric power and leakage electric power. The transferred electric power is obtained only in the intermediate circuit, and the maximum power point (MPP) shifts to the short circuit situation as the junction dynamic velocity becomes the greatest. However, the leakage electric power corresponds to a loss of the minority carrier’s charge in the junction during the crossing of the junction. This loss causes a Joule heating effect of the junction. The heating of the junction causes the quality degradation of the PV cell mainly due to the electric component. The solar illumination wavelength is presenting the inversion phenomenon with the maximum of the electrical outputs of the silicon PV cell of around 0.70 μm which provides the greatest conversion efficiency. This value has been chosen for the modelling of the radio wave influence. Hence, the conversion efficiency increases when the PV system is far away from the electromagnetic emission source. PV system installation in the vicinity of an electromagnetic emission source is not advised.

Funder

International Science Program

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3