Affiliation:
1. College of Information Network Security, People’s Public Security University of China, Beijing 10038, China
2. China Mobile Information Technology Company Limited, China Mobile, Shenzhen 518048, China
Abstract
Telecommunication network fraud crimes frequently occur in China. Predicting the number and trend of telecommunication network fraud will be of great significance to combating crimes and protecting the legal property of citizens. This paper proposes a combined model of predicting telecommunication network fraud crimes based on the Regression-LSTM model. First, we find that there is a strong correlation between privacy data illegally sold on the dark web and telecommunication network fraud data. Hence, this paper constructs a Linear Regression model using the privacy data illegally sold on the dark web to predict the number of telecommunication network fraud crimes. Second, an LSTM prediction model is constructed using the data of telecommunication network fraud cases on China Judgments Online based on the time-series feature of telecommunication network fraud crimes. Third, this paper uses the error reciprocal method to combine the two models for prediction. In addition, this paper selects the monthly data set of telecommunication network fraud occurring in 2021 for experimental evaluation. The experimental results show that the accuracy of the Regression-LSTM model constructed in this paper is 86.80%, and the RMSE is 0.149. Compared with the ARIMA, Linear Regression, LSTM, Additive-ARIMA-LSTM, and Multiplicative-ARIMA-LSTM models, the Regression-LSTM model proposed has the highest prediction accuracy.
Funder
Fundamental Research Project of PPSUC
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献