Prediction of Telecommunication Network Fraud Crime Based on Regression-LSTM Model

Author:

Gao Youyang1,Yin Dechun1,Zhao Xiaoliang1,Wang Yu1,Huang Yan2ORCID

Affiliation:

1. College of Information Network Security, People’s Public Security University of China, Beijing 10038, China

2. China Mobile Information Technology Company Limited, China Mobile, Shenzhen 518048, China

Abstract

Telecommunication network fraud crimes frequently occur in China. Predicting the number and trend of telecommunication network fraud will be of great significance to combating crimes and protecting the legal property of citizens. This paper proposes a combined model of predicting telecommunication network fraud crimes based on the Regression-LSTM model. First, we find that there is a strong correlation between privacy data illegally sold on the dark web and telecommunication network fraud data. Hence, this paper constructs a Linear Regression model using the privacy data illegally sold on the dark web to predict the number of telecommunication network fraud crimes. Second, an LSTM prediction model is constructed using the data of telecommunication network fraud cases on China Judgments Online based on the time-series feature of telecommunication network fraud crimes. Third, this paper uses the error reciprocal method to combine the two models for prediction. In addition, this paper selects the monthly data set of telecommunication network fraud occurring in 2021 for experimental evaluation. The experimental results show that the accuracy of the Regression-LSTM model constructed in this paper is 86.80%, and the RMSE is 0.149. Compared with the ARIMA, Linear Regression, LSTM, Additive-ARIMA-LSTM, and Multiplicative-ARIMA-LSTM models, the Regression-LSTM model proposed has the highest prediction accuracy.

Funder

Fundamental Research Project of PPSUC

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3