Stochastic Energy Performance Evaluation Using a Bayesian Approach

Author:

Terzi Erol1ORCID,Gumustekin Aydin Serpil1ORCID,Cengiz Mehmet Ali1ORCID

Affiliation:

1. Ondokuz Mayıs University, Faculty of Science, Department of Statistics, Samsun, Turkey

Abstract

In the past two decades, stochastic frontier analysis (SFA) has been extensively employed to assess energy efficiency. However, the use of the Bayesian approach in SFA for energy performance evaluation has not received significant attention. This study aims to address this gap by measuring the energy-based development performance of 29 OECD countries using stochastic frontier analysis with a Bayesian approach. In the existing literature, there is no apparent method for selecting the distribution of the inefficiency term, which represents the unexplained deviation from the production frontier. To address this issue, we propose different models with various inefficiency components, namely, the half normal, truncated normal, exponential distribution, and gamma distribution. Our analysis utilizes a panel dataset covering the period from 2004 to 2010. The Bayesian implementation of the proposed models is conducted using the WinBUGS package, employing the Markov chain Monte Carlo (MCMC) method. The primary objective of our study is to compare these models, each assuming a different distribution for the inefficiency term, using the deviance information criterion (DIC). The DIC serves as a reliable measure for model comparison and enables us to identify the most suitable model that accurately captures the energy efficiency scores of the countries. Based on the comparison of models with different distributional assumptions using the DIC, we find that the model with a half-normal inefficiency distribution yields the lowest DIC score. Consequently, this model is employed to rank the energy efficiency scores of the countries. In summary, our study fills a research gap by applying the Bayesian approach to SFA in the context of energy efficiency analysis. By proposing and comparing models with different inefficiency components, we contribute to the literature and offer insights into the relative energy efficiency performance of 29 OECD countries. The findings of our study not only inform the selection of an appropriate model but also facilitate the ranking of countries based on their energy efficiency using the identified best model.

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3