Analyzing Influence of Mix Design Constituents on Compressive Strength, Setting Times, and Workability of Geopolymer Mortar and Paste

Author:

Oyejobi Damilola1ORCID,Jameel Mohammed2,Adewuyi Adekunle1,Aina Samuel3,Avudaiappan Siva456,Maureira-Carsalade Nelson7

Affiliation:

1. Department of Civil Engineering, University of Botswana, Gaborone, Botswana

2. Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia

3. Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa

4. Departamento de Ingeniería Civil, Universidad de Concepción, Concepción 4070386, Chile

5. Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 8331150, Chile

6. Department of Physiology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, India

7. Departamento de Ingeniería Civil, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile

Abstract

Geopolymer concrete and mortar have evolved over the years as potential alternatives for reducing the greenhouse gases associated with cement production. This current research was aimed at investigating the optimum dosage and concentration of sodium hydroxide required to leach out silica and alumina oxides in the fly ash for geopolymerization to take place. Blackish grey fly ash from Morupule, Botswana, was synthesized by varying sodium hydroxide (NaOH) of 98% purity between 8 M and 14 M, respectively. The ratio influence of sodium hydroxide to fly ash in dissolving the oxides was carried out at the values of 0.55, 0.62, and 0.75. The results showed that the workability of the geopolymer mortar and paste decreased with the increase in the ratio of fly ash to alkaline activator. The highest workability was achieved at a ratio of 0.75 : 1. The compressive strength, setting time, and workability of geopolymer mortar and paste can be controlled by adjusting the ratio of fly ash to alkaline activator. A ratio of 1.5 : 1 was found to be the most suitable for achieving high compressive strength, while a ratio of 0.75 : 1 was found to be the most suitable for achieving high workability. Furthermore, the workability values were in the range of 105 to 143 mm, while the ranges of initial and final setting times were found to be between 280–350 and 950–1170 minutes, respectively. This study is significant because no previous study has carried out geopolmerization of the Morupule fly ash as a result of its unique characteristics. These findings have important implications for the development of sustainable construction materials. The main finding was that for optimum reaction to take place, and NaOH/fly ash ratio should be kept at 0.55 and molarity of 12 to avoid leaching of other oxides that might weaken the strength.

Funder

University of Botswana

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3