Affiliation:
1. CNEA—CONICET, Instituto Balseiro, Bariloche 8400, Argentina
2. Florestan Technology, Instituto Balseiro, Bariloche 8400, Argentina
Abstract
Experimentally validated void reactivity calculations were used to study the feasibility of a change in the design basis of Atucha II Nuclear Power Plant including the Large LOCA event. The use of CARA fuel element with burnable neutronic absorbers and enriched uranium is proposed instead of the original fuel. The void reactivity, refuelling costs, and power peaking factors are analysed at conceptual level to optimize the burnable neutronic absorber, the enrichment grade, and their distribution inside the fuel. This work concludes that, for the considered plant conditions, either a void reactivity coefficient granting no prompt critical excursion on Large LOCA or negative void reactivity is achievable, with advantages on refuelling cost and linear power density.
Subject
Nuclear Energy and Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献