HybridHAM: A Novel Hybrid Heuristic for Finding Hamiltonian Cycle

Author:

Seeja K. R.1ORCID

Affiliation:

1. Department of Computer Science & Engineering, Indira Gandhi Delhi Technical University for Women, Kashmere Gate, Delhi 110006, India

Abstract

Hamiltonian Cycle Problem is one of the most explored combinatorial problems. Being an NP-complete problem, heuristic approaches are found to be more powerful than exponential time exact algorithms. This paper presents an efficient hybrid heuristic that sits in between the complex reliable approaches and simple faster approaches. The proposed algorithm is a combination of greedy, rotational transformation and unreachable vertex heuristics that works in three phases. In the first phase, an initial path is created by using greedy depth first search. This initial path is then extended to a Hamiltonian path in second phase by using rotational transformation and greedy depth first search. Third phase converts the Hamiltonian path into a Hamiltonian cycle by using rotational transformation. The proposed approach could find Hamiltonian cycles from a set of hard graphs collected from the literature, all the Hamiltonian instances (1000 to 5000 vertices) given in TSPLIB, and some instances of FHCP Challenge Set. Moreover, the algorithm has O(n3) worst case time complexity. The performance of the algorithm has been compared with the state-of-the-art algorithms and it was found that HybridHAM outperforms others in terms of running time.

Funder

University Grants Commission

Publisher

Hindawi Limited

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph-based spot melting sequence for electron beam powder bed fusion;Additive Manufacturing;2024-07

2. Finding Hamiltonian Cycles with Graph Neural Networks;2023 International Symposium on Image and Signal Processing and Analysis (ISPA);2023-09-18

3. A graph theoretic representation and analysis of zeolite frameworks;Computers & Chemical Engineering;2021-12

4. A heuristic search algorithm for Hamiltonian circuit problems in directed graphs;Wireless Networks;2019-10-15

5. Solving travelling salesman problem with sparse graphs;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2019 (ICCMSE-2019);2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3