Performance and Improvement Analysis of the Underwater WSN Using a Diverse Routing Protocol Approach

Author:

Sathish K.1,Ravikumar C. V.1ORCID,Srinivasulu Asadi2ORCID,Rajesh A.3,Oyerinde Olutayo Oyeyemi4

Affiliation:

1. Vellore Institute of Technology, Vellore, India

2. Data Science Research Lab, BlueCrest University, Monrovia, Liberia

3. School of Electrical and Electronics Engineering, SASTRA University, Thanjavur, India

4. School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg 2050, South Africa

Abstract

The planet Earth is the most water-rich place because oceans cover more than 75% of its land area. Because of the extraordinary activities that occur in the depths, we know very little about oceans. Underwater wireless sensors are tools that can continuously transmit data to one of the source sensors while also monitoring and recording the physical and environmental parameters of their surroundings. An underwater wireless sensor network (UWSN) is the name given to the network created by the collection of these underwater wireless sensors. This particular technology is the most efficient way to analyse performance parameters. A network path is chosen to send traffic by using the routing method, a process that is also known as a protocol. The routing protocols ad-hoc on-demand distance vector (AODV), dynamic source routing (DSR), dynamic manet on demand routing protocol (DYMO), location-aided routing 1 (LAR 1), optimized link state routing (OLSR), source-tree adaptive routing optimum routing approach (STAR-ORA), zone routing protocol (ZRP), and STAR-least overhead routing approach (STAR-LORA) are a few models of routing techniques. By changing the number of nodes in the model and the maximum speed of each node, performance parameters such as average transmission delay, average jitter, percentage of utilisation, and power used in transmit and receive modes are explored. The results obtained using QualNet 7.1 simulator suggest the suitability of routing protocols in the UWSN.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3