Anodal Transcranial Direct Current Stimulation (atDCS) of the Primary Motor Cortex (M1) Facilitates Nonconscious Error Correction of Negative Phase Shifts

Author:

Pollok Bettina1ORCID,Jurkiewicz Martin1ORCID,Krause Vanessa12ORCID

Affiliation:

1. Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany

2. Department of Neuropsychology, Mauritius Hospital and Neurorehabilitation Center Meerbusch, 40670 Meerbusch, Germany

Abstract

Accurate motor timing requires the temporally precise coupling between sensory input and motor output including the adjustment of movements with respect to changes in the environment. Such error correction has been related to a cerebello-thalamo-cortical network. At least partially distinct networks for the correction of perceived (i.e., conscious) as compared to nonperceived (i.e., nonconscious) errors have been suggested. While the cerebellum, the premotor, and the prefrontal cortex seem to be involved in conscious error correction, the network subserving nonconscious error correction is less clear. The present study is aimed at investigating the functional contribution of the primary motor cortex (M1) for both types of error correction in the temporal domain. To this end, anodal transcranial direct current stimulation (atDCS) was applied to the left M1 in a group of 18 healthy young volunteers during a resting period of 10 minutes. Sensorimotor synchronization as well as error correction of the right index finger was tested immediately prior to and after atDCS. Sham stimulation served as control condition. To induce error correction, nonconscious and conscious temporal step-changes were interspersed in a sequence of an isochronous auditory pacing signal in either direction (i.e., negative or positive) yielding either shorter or longer intervals. Prior to atDCS, faster error correction in conscious as compared to nonconscious trials was observed replicating previous findings. atDCS facilitated nonconscious error correction, but only in trials with negative step-changes yielding shorter intervals. In contrast to this, neither tapping speed nor synchronization performance with respect to the isochronous pacing signal was significantly modulated by atDCS. The data suggest M1 as part of a network distinctively contributing to the correction of nonconscious negative step-changes going beyond sensorimotor synchronization.

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3