Affiliation:
1. Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
2. Department of Neuropsychology, Mauritius Hospital and Neurorehabilitation Center Meerbusch, 40670 Meerbusch, Germany
Abstract
Accurate motor timing requires the temporally precise coupling between sensory input and motor output including the adjustment of movements with respect to changes in the environment. Such error correction has been related to a cerebello-thalamo-cortical network. At least partially distinct networks for the correction of perceived (i.e., conscious) as compared to nonperceived (i.e., nonconscious) errors have been suggested. While the cerebellum, the premotor, and the prefrontal cortex seem to be involved in conscious error correction, the network subserving nonconscious error correction is less clear. The present study is aimed at investigating the functional contribution of the primary motor cortex (M1) for both types of error correction in the temporal domain. To this end, anodal transcranial direct current stimulation (atDCS) was applied to the left M1 in a group of 18 healthy young volunteers during a resting period of 10 minutes. Sensorimotor synchronization as well as error correction of the right index finger was tested immediately prior to and after atDCS. Sham stimulation served as control condition. To induce error correction, nonconscious and conscious temporal step-changes were interspersed in a sequence of an isochronous auditory pacing signal in either direction (i.e., negative or positive) yielding either shorter or longer intervals. Prior to atDCS, faster error correction in conscious as compared to nonconscious trials was observed replicating previous findings. atDCS facilitated nonconscious error correction, but only in trials with negative step-changes yielding shorter intervals. In contrast to this, neither tapping speed nor synchronization performance with respect to the isochronous pacing signal was significantly modulated by atDCS. The data suggest M1 as part of a network distinctively contributing to the correction of nonconscious negative step-changes going beyond sensorimotor synchronization.
Subject
Neurology (clinical),Neurology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献