Time Evolution of Initial Errors in Lorenz’s 05 Chaotic Model

Author:

Bednář Hynek1ORCID,Raidl Aleš1,Mikšovský Jiří1

Affiliation:

1. Department of Meteorology and Environment Protection, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague, Czech Republic

Abstract

Initial errors in weather prediction grow in time and, as they become larger, their growth slows down and then stops at an asymptotic value. Time of reaching this saturation point represents the limit of predictability. This paper studies the asymptotic values and time limits in a chaotic atmospheric model for five initial errors, using ensemble prediction method (model’s data) as well as error approximation by quadratic and logarithmic hypothesis and their modifications. We show that modified hypotheses approximate the model’s time limits better, but not without serious disadvantages. We demonstrate how hypotheses can be further improved to achieve better match of time limits with the model. We also show that quadratic hypothesis approximates the model’s asymptotic value best and that, after improvement, it also approximates the model’s time limits better for almost all initial errors and time lengths.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3