A Balanced Power Consumption Algorithm Based on Enhanced Parallel Cat Swarm Optimization for Wireless Sensor Network

Author:

Kong Lingping1,Pan Jeng-Shyang2,Tsai Pei-Wei2ORCID,Vaclav Snasel3,Ho Jiun-Huei4

Affiliation:

1. Innovative Information Industry Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China

2. College of Information Science and Engineering, Fujian University of Technology, Fuzhou 350118, China

3. Department of Computer Science, VSB Technical University of Ostrava, 70833 Ostrava, Czech Republic

4. Department of Computer Science and Information Engineering, Cheng Shiu University, Kaohsiung 83347, Taiwan

Abstract

The wireless sensor network (WSN) is composed of a set of sensor nodes. It is deemed suitable for deploying with large-scale in the environment for variety of applications. Recent advances in WSN have led to many new protocols specifically for reducing the power consumption of sensor nodes. A new scheme for predetermining the optimized routing path is proposed based on the enhanced parallel cat swarm optimization (EPCSO) in this paper. This is the first leading precedent that the EPCSO is employed to provide the routing scheme for the WSN. The experimental result indicates that the EPCSO is capable of generating a set of the predetermined paths and of smelting the balanced path for every sensor node to forward the interested packages. In addition, a scheme for deploying the sensor nodes based on their payload and the distance to the sink node is presented to extend the life cycle of the WSN. A simulation is given and the results obtained by the EPCSO are compared with the AODV, the LD method based on ACO, and the LD method based on CSO. The simulation results indicate that our proposed method reduces more than 35% power consumption on average.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3