Evasion-Pursuit Strategy against Defended Aircraft Based on Differential Game Theory

Author:

Sun Qilong1ORCID,Shen Minghui1ORCID,Gu Xiaolong1ORCID,Hou Kang1ORCID,Qi Naiming2ORCID

Affiliation:

1. Beijing Institute of Space Long March Vehicle, Beijing 100076, China

2. Harbin Institute of Technology, Harbin 100050, China

Abstract

The active defense scenario in which the attacker evades from the defender and pursues the target is investigated. In this scenario, the target evades from the attacker, and the defender intercepts the attacker by using the optimal strategies. The evasion and the pursuit boundaries are investigated for the attacker when the three players use the one-to-one optimal guidance laws, which are derived based on differential game theory. It is difficult for the attacker to accomplish the task by using the one-to-one optimal guidance law; thus, a new guidance law is derived. Unlike other papers, in this paper, the accelerations of the target and the defender are unknown to the attacker. The new strategy is derived by linearizing the model along the initial line of sight, and it is obtained based on the open-loop solution form as the closed-loop problem is hard to solve. The results of the guidance performance for the derived guidance law are presented by numerical simulations, and it shows that the attacker can evade the defender and intercept the target successfully by using the proposed strategy.

Funder

Shanghai Aerospace Science and Technology Innovation

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3