Microfluidic Biosensor Based on Microwave Substrate-Integrated Waveguide Cavity Resonator

Author:

Salim Ahmed1,Kim Sung-Hwan2,Park Joong Yull2,Lim Sungjoon1ORCID

Affiliation:

1. School of Electrical and Electronics Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

2. School of Mechanical Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

Abstract

A microfluidic biosensor is proposed using a microwave substrate-integrated waveguide (SIW) cavity resonator. The main objectives of this noninvasive biosensor are to detect and analyze biomaterial using tiny liquid volumes (3 μL). The sensing mechanism of our proposed biosensor relies on the dielectric perturbation phenomenon of biomaterial under test, which causes a change in resonance frequency and return loss (amplitude). First, an SIW cavity is realized on a Rogers RT/Duroid 5870 substrate. Then, a microwell made from polydimethylsiloxane (PDMS) material is loaded on the SIW cavity to observe the perturbation phenomenon. The microwell is filled with phosphate-buffered saline (PBS) solution (reference biological medium). To demonstrate the sensing behavior, the fibroblast (FB) cells from the lungs of a human male subject are analyzed and one-port S-parameters are measured. The resonance frequency of the structure with FB cells is observed to be 13.48 GHz. The reproducibility and repeatability of our proposed biosensor are successfully demonstrated through full-wave simulations and measurements. The resonance frequency of the FB-loaded microwell showed a shift of 170 MHz and 20 MHz, when compared to those of empty and PBS-loaded microwells. Its analytical limit of detection is 213 cells/μL. Our proposed biosensor is noncontact and reliable. Furthermore, it is miniaturized, inexpensive, and fabricated using simple- and easy-design processes.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3