Dynamic Service Request Scheduling for Mobile Edge Computing Systems

Author:

Chen Ying1ORCID,Zhang Yongchao1,Chen Xin1

Affiliation:

1. Computer School, Beijing Information Science and Technology University (BISTU), Beijing 100101, China

Abstract

Nowadays, mobile services (applications) running on terminal devices are becoming more and more computation-intensive. Offloading the service requests from terminal devices to cloud computing can be a good solution, but it would put a high burden on the network. Edge computing is an emerging technology to solve this problem, which places servers at the edge of the network. Dynamic scheduling of offloaded service requests in mobile edge computing systems is a key issue. It faces challenges due to the dynamic nature and uncertainty of service request patterns. In this article, we propose a Dynamic Service Request Scheduling (DSRS) algorithm, which makes request scheduling decisions to optimize scheduling cost while providing performance guarantees. The DSRS algorithm can be implemented in an online and distributed way. We present mathematical analysis which shows that the DSRS algorithm can achieve arbitrary tradeoff between scheduling cost and performance. Experiments are also carried out to show the effectiveness of the DSRS algorithm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Resource Allocation in Mobile Edge Computing using Reinforcement Learning Approach;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

2. A Mobile-assisted Edge Computing Framework for Emerging IoT Applications;ACM Transactions on Sensor Networks;2021-07-22

3. Edge-Computing-Enabled Smart Cities: A Comprehensive Survey;IEEE Internet of Things Journal;2020-10

4. An Intelligent Adaptive Algorithm for Servers Balancing and Tasks Scheduling over Mobile Fog Computing Networks;Wireless Communications and Mobile Computing;2020-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3