Industrial Internet of Things Model Driven by Particle Filter and Network Communication Technology

Author:

Liu Jianlan1ORCID

Affiliation:

1. School of Electronic Information Engineering, Nantong Vocational University, Nantong, Jiangsu 226007, China

Abstract

In this paper, a better particle filter algorithm is put forth to address the issues of particle filter sample exhaustion and weight degradation. The algorithm frames the received signal and separates the signals in two steps based on the slow-varying properties of system parameters in practical applications, such as phase shift and transmission delay. In addition, the network model and energy consumption model are built while the sensor data is being collected and processed using the industrial IoT’s communication mechanism and algorithm. The repeater is chosen as the node with the lowest transmission energy consumption, and the industrial field’s sensor data is gathered via the fog server node. The simulation results demonstrate that the proposed algorithm’s accuracy rate is 95.54 percent, higher than that of the comparison algorithm. The enhanced algorithm suggested in this paper can simultaneously achieve improved parameter estimation performance and achieve signal separation with low bit error rates. Additionally, the communication system and algorithm can efficiently gather the sensing information from the industrial field, and the indicators like energy consumption and the first dead node are better than other algorithms. It offers an innovative method for enhancing industrial field application.

Funder

Nantong Science and Technology Project

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference21 articles.

1. GPU-accelerated Faster Mean Shift with euclidean distance metrics;L. You,2021

2. Network-Aware Locality Scheduling for Distributed Data Operators in Data Centers

3. NOMA-Enabled Mobile Edge Computing for Internet of Things via Joint Communication and Computation Resource Allocations

4. Arctic sea ice detection based on microwave radiometer in 89GHz channels;Y. Zhao;ASP Transactions on Internet of Things,2021

5. Internet of Things System Based on Mobile Communication Network

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3